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bstract

We present in this paper a new method of determining the nucleation probability J(T ) of a supercooled liquid dispersed within an emulsion,
ased on the analysis of the thermogram obtained during a regular cooling. The thermal behaviour of the sample during the cooling is modelled
n order to calculate the thermogram and so to compare it with the experimental thermogram. A genetic algorithm (GA) is then used to identify
he parameters of the J(T ) function by minimizing a least squares objective function comparing calculated and measured thermograms. This
dentification procedure is used to determine the crystallization probability of two samples of same composition but of different manufacture. The

esults are compared with each other as well as with the results obtained through a traditional calorimetric method. These various tests show that
A associated with calorimetry is a useful and easy tool for the determination of the nucleation probability J(T ).
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. Introduction

Fusion and crystallization of a pure substance are two non-
ymmetrical phenomena: whereas fusion always occurs at the
elting point TF, crystallization may happen at a temperature TC

ower than TF. It is the undercooling (also called supercooling)
henomenon [1].

The metastability breakdown – which leads to crystallization
is a random phenomenon that must be described in terms of

robability. One introduces the probability of crystallization per
nit of time J(T ) which represents an important information
or the examination of undercooling and is essential to model
he thermal behaviour of a liquid when being cooled below its

elting point [2,3].
Although the theoretical form of J(T ) is known [4,5], it is

ften necessary to determine it out of from experimental data.
he most widely used methods are based on the analysis of ther-
ograms recorded during a steady cooling [6].These methods

enerally suppose that the temperature of the sample is uniform
nd equal to the programmed temperature, what is generally

alse. Moreover, the determination of J for a range of tempera-
ures requires several cooling–heating cycles, which can damage
he emulsion.
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To avoid these various difficulties, we have developed a
ethod based on an opposite approach [7,8] with the identi-
cation of several parameters of a 2D unsteady heat transfer
odel. Although the results show the validity of this method,

he experimentations are fastidious and time-consuming (about
0 h) and require a large quantity of sample (about 100 ml).

We present in this paper a new “hybrid” identification method
ased on the use of genetic algorithms for the analysis of ther-
ograms obtained by calorimetry. It allows to work with a very

mall quantity of sample (a few milligrams). Besides, the method
oes not require several heating–cooling cycles, allowing the
tudy of ufragile emulsions. However, this method has to be
eserved to the emulsions whose only the dispersed phase crys-
allizes. This restriction has several consequences on the as-
umptions that can be formulated concerning the crystallization
inetics and the heat transfer model. Furthermore, the expres-
ion of J(T ) supposes that all the droplets have the same vol-
me. This rigorously limits the application fields of the method
o strictly monodisperses emulsions. We will reconsider these
arious points in the following paragraphs.

. Crystallization kinetics of droplets dispersed within

n emulsion

Due to the undercooling phenomenon, crystallization of a
ubstance occurs at a temperature TC lower than the melting

mailto:stephane.gibout@univ-pau.fr
dx.doi.org/10.1016/j.tca.2006.12.012
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oint TF. For a given substance the undercooling �T = TF −
C > 0 mainly depends on the sample volume [9]: typically
alues of �T for water are 14 K for volume of a few mm3 and
9 K for volume about �m3 [2].

It is however important to note that �T is a statistical data
ince the metastability breakdown is a fundamentally random
rocess [1,10].

The crystallization process can be seen as a two steps pro-
ess [11,12]. The first one corresponds to the apparition within
he liquid phase of a “supercritical aggregate” having the same
rystalline structure as the solid. It is the “germination” or “nu-
leation” phase. The second phase corresponds to the crystalline
rowth, initiated by this supercritical germ and leading to the to-
al crystallization of the sample.

In this work, we are interested in the crystallization of the
roplets dispersed within an emulsion. As their average size
s close to the micrometer and the liquid is undercooled, i.e.
ar from its stable state, we consider the crystalline growth as
nstantaneous. Thus, the kinetics of crystallization is assumed
o be exclusively driven by the germination phase [13]. Then
he complete crystallization of the sample occurs when the first
upercritical aggregate appears.

The classical theories of nucleation [4,5,14,15] define the
robability of nucleation per unit volume and unit volume I(T ),
hich corresponds to the probability of formation of the super-

ritical aggregate initiating crystallization:

(T ) = k(T ) exp

(
−�G�

kT

)
(1)

The work of formation of the supercritical aggregate �G� is
ainly due to the surface tension σ between the liquid and the

ggregate. During its formation within the liquid (homogeneous
ucleation), the work of formation of the supercritical aggregate
s given by the following expression [4,16]:

G∗ = 16

3

σ3v2

�2
F

(
TF

TF − T

)2

(2)

ith v is the molar volume of the liquid and �F is the molar heat
f fusion. The pre-exponential term k(T ) varies more slowly
ith the temperature than the exponential term and can be thus

onsidered as constant in this work.
For a single droplet of size V, the probability of nucleation

er unit time J(T ) = VI(T ) may be expressed as

(T ) =

⎧⎪⎨
⎪⎩

A exp

(
− B

T (T − TF)2

)
for T < TF

0 for T ≥ TF

(3)

here A = Vk(T ) and B = (16/3)(σ3v2TF
2/k�2

F) are consid-
red as constants for a given volume V. The B coefficient is a
haracteristic of the undercooled substance (molar volume of
he crystal, liquid-crystal interfacial tension) whereas A linearly
epends on the volume of the crystal [17,9,18,1,4] for the case

f heterogeneous nucleation.

As we suppose here that the crystalline growth is instanta-
eous and begins with the formation of the first supercritical
ggregate, J(T ) also represents the probability of crystalliza-
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d
t
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ig. 1. Probability of crystallization per unit time J(T ) for A = 1.8 × 1010 s−1,
= 1.6 × 106 K3 and TF = 291 K.

ion per unit time of a droplet of volume V. The J(T ) function is
trongly nonlinear. It remains very close to zero for a wide range
f temperatures below TF and then quickly increases when T de-
reases (see Fig. 1).

.1. Case of a droplet population

Due to the stochastic nature of metastability breakdown, it is
ecessary to use a statistical approach, simultaneously studying
large number of samples. This can be done by considering the
roplets of a near monodisperse emulsion.

Let nt be the total number of droplets per unit volume of emul-
ion and n the number of crystallized droplets. Between times t
nd t + dt, whereas the temperature is assumed to be constant,
he rate of crystallizing droplets can be expressed as the product
f the number of liquid droplets nt − n and the crystallization
robability J(T ):

dn

dt
= (nt − n)J(T ) (4)

Introducing the crystallized fraction ϕ = n/nt , Eq. (4) can
e rewritten as

dϕ

dt
= (1 − ϕ)J(T ) (5)

This expression constitutes the fundamental equation of the
inetics of the crystallization of the droplets dispersed within an
mulsion.

. Numerical simulation of emulsion cooling inside the
alorimetric cell

The thermal behaviour of an emulsion enclosed inside a DSC
ell has already been examined [8,19]. In particular, a transient
D axi-symmetrical model was designed [20]. This model re-
uires the knowledge of all the thermophysical properties, in-

luding the thermal conductivity and J(T ) which are difficult to
etermine. It is also necessary to define the exact geometry of
he sample, that may be difficult because of the small size of the
ell and the induced capillarity phenomenon.
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Fig. 2. Simplified model of the sample in the calorimetric cell.

In this work, we use a simplified lumped transient model.
n spite of the imposed constraints that will be detailed here-
fter, this method allows to avoid the problems previously men-
ioned. Moreover since the model is now simplified, the com-
uting times are reduced.

The model represents the sample holder filled with an amount
of emulsion (cf. Fig. 2). Its state is characterized by its tem-

erature T (t) and its crystallized fraction ϕ(t), which evolve in
ime. The cooling of the sample is imposed by the circulation
f a fluid around the cell. The temperature of this cooling fluid
s denoted by T∞(t). The outer area of the sample is S and the
orresponding global heat exchange coefficient is H.

The emulsion is treated as an homogeneous medium char-
cterized by its density ρ, its heat capacity C and its heat of
rystallization per unit mass L. Since only the dispersed phase
rystallizes, we have L = PLF where P is the mass fraction (i.e.
ass of dispersed phase divided by the total mass of the sample)

nd LF the latent heat of crystallization of the dispersed phase.
et us note that only L is directly accessible by calorimetry.

The heat capacity is assumed to be linearly dependent on the
rystallized fraction ϕ:

(ϕ) = CL + (CS − CL)ϕ(t) (6)

here CL is the heat capacity of the emulsion when droplets are
n the liquid, and CS is the heat capacity of the emulsion when
roplets are in the solid state.

Because the heat conduction within the emulsion is not taken
nto account, the homogeneity of temperature within the sample

ust be taken as given. This imposes particularly a low cooling
ate and a small amount of sample [21].

With the previous hypotheses, the first law of thermodynam-
cs applied to the sample leads to:

C
dT (t)

dt
= HS(T∞(t) − T (t)) + mL

dϕ(t)

dt
(7)

lus Eq. (5) describing the crystallization kinetics:

dϕ(t)

dt
= (1 − ϕ(t))J(T (t)) (8)

In the Eq. (7), φsim(t) = HS(T∞(t) − T (t)) represents the
eat flow received by the sample. This quantity corresponds
o the information φexp(t) provided by the DSC.

At t = 0, we assume that the sample is in thermal equilibrium

ith the calorimeter T (0) = T∞(0) and that all droplets are in

he liquid state ϕ(0) = 0.
The Eqs. (7) and (8) are solved using the classical explicit

uler method with constant time step �t.

(

Fig. 3. Simulated evolution of T (t) and ϕ(t).

Fig. 3 shows the evolution of the temperature T (t) and
f the crystallized fraction ϕ(t) during a steady cooling (β =
0.5 K min−1). The characteristics of the sample are: ρ =

000 kg m−3, CL = 2500 J kg−1 K−1, CS = 2000 J kg−1 K−1,
= 100 kJ kg−1, TF = 291 K, A = 1.8 × 1010 s−1, B = 1.6 ×

06 K3, m = 10 × 10−6 kg and HS = 0.01 W K−1.
It can be noticed that temperatures within the sample and

n the holder are very close when no crystallization takes place.
uring the crystallization phase (approximately 5 min), the sam-
le temperature becomes slightly higher than T∞ because of the
xothermic characteristic of the crystallizations. However, this
aximum deviation (�Tmax ≈ 0.7 K on Fig. 3) remains small.
The corresponding thermogram is represented by a continu-

us line (“nominal values” curve) on Fig. 4. It also shows sev-
ral thermograms calculated with different values of A and B.
t shows that a calculated thermogram is much modified by a
ariation of B than by the same variation of A. Since the deter-
ination of A and B is carried out starting from the thermogram,

ne understands that the estimation is much more difficult and
mprecise for A than for B. This difficulty does not seem to de-
end on the inversion method but rather on the fast variation of
(T ) with the temperature which induces the very weak influ-
nce of A on the thermal phenomena. Finally, it can be noticed
hat the area of the peak is preserved in all the cases since it is
irectly proportional to mL.

. Genetic algorithm approach of the parameters
stimation

The model detailed previously introduces several parameters
hich can be classified in two groups:

1) quantities that can be directly measured by DSC or by any
classical method. This concerns the heat capacities CL and
CS, the apparent latent heat of fusion L, the melting point
TF, as well as the density ρ;
2) coefficients A, B and the global HS coefficient. These pa-
rameters are generally difficult to estimate with accuracy by
classical methods.
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Fig. 4. Influence of parameters A and B on φ(t).

In this work, we consider the quantities of the first group as
nown and we use a “genetic algorithm” to estimate those of
he second group. The sample amount as well as the cooling
ate are selected in order to verify the temperature homogeneity
ssumption made in the model.

.1. Genetic algorithm method

A genetic algorithm (GA) is a method of stochastic opti-
ization inspired by the biological evolution [22]. By analogy,
possible solution is called “individual” and all the individuals
onstitute a “population”. All the characteristics of an individ-
al are encoded and stored in a “chromosome”. A numerical
alue called “fitness” (f) is associated to each individual. It is
measurement of the “quality” of an individual which allows

lassification among themselves. Thus, an individual X is better
han Y if fX > fY .

GA iterative process begins with the creation of the “zeroth
eneration population” composed of Nind randomly chosen in-
ividuals. The iterative process of evolution then begins (Fig.
): the (g + 1) generation is deduced from the previous one ac-
ording to the following consecutive steps:

Evaluation: The chromosome of each individual is decoded
and the corresponding fitness is calculated. At the end of this
evaluation step, all the individuals of the initial population
can be compared to each other.
Selection: A subset of the initial population is selected. The
Nind/2 individuals of this intermediate population are se-
lected according to their fitness. Numerous methods exist
[22], the objective being to obtain a good intermediate popu-
lation while preserving the “genetic diversity”. In this work,
we use the procedure of selection by tournaments where the
best of two randomly chosen individuals of the initial popu-
lation is added to the intermediate population. After Nind/2
tournaments, the intermediate population is complete.

Crossover: Like in the nature, the crossover is one of the
main processes of the evolution, during which the genetic
information is exchanged between the individuals: two “par-
ents” randomly chosen in the intermediate population gener-

o
9
h

Fig. 5. GA optimization procedure.

ate two new individuals (i.e. the “children”). The crossover
phase produces Nind/2 children who are added to the inter-
mediate population. The resulting population is then of size
Nind.
Mutation: “To mutate” an individual consists in randomly
modifying the value of one of its genes. This mechanism
allows to investigate the whole space of the solutions and so
to avoid the convergence towards a local maximum. Mutation
remains however a rare event and the probability pmut that
an individual undergoes a mutation during a generation is
generally small.

A mechanism of elitism protects the best individual of every
eneration by ensuring that he appears unaltered in the next
eneration.

.2. Application to the thermophysical characterization of
freezing emulsion

As mentioned previously, unknown parameters are A, B and
S, which constitute the chromosome of an individual.
In order to estimate an individual, we extract the values car-

ied by its chromosome, which we use to calculate the ther-
ogram as described in Section 3. The more the individual is

good”, the more this thermogram must approach the exper-
mental thermogram. The fitness f associated to a particular
ndividual is thus calculated by using:

= −
∫

(φexp(t) − φsim(t))2 dt (9)

here φexp(t) and φsim(t) are, respectively, the measured and the
alculated fluxes.

. Results
The experimental results presented hereafter have been
btained from an “hexadecan within water” emulsion (ρ =
32.5 kg m−3, TF = 291 K), whose stability and thermal be-
aviour have been already examined [8,20]. Two samples have
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Table 1
Experimental specific heat capacity and latent heat energy

Quantity Sample 1 Sample 2 Unit
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Table 2
GA results for samples #1 and #2

Sample #1 Sample #2
Mean Best Mean Best
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a
c
ciably the same shape for J(T ). Supposing the mathematical
L 112.5 114.3 kJ kg−1

CL 2300 2250 J kg−1 K−1

CS 1950 1880 J kg−1 K−1

een used, with respective masses of 11.25 mg (sample 1) and
0.30 mg (sample 2). We used a Perkin-Elmer PYRIS DIA-
OND differential scanning calorimeter (DSC). The value of

he specific heat capacities (CL and CS) and the latent heat en-
rgy are deduced from experimental thermograms using Perkin-
lmer Software. These values are gathered in Table 1.

As previously mentioned, the nucleation/crystallization prob-
bility is deduced from thermogram recorded during a steady
ooling. Initial temperature is about 298 K and the cooling rate
s −0.5 K min−1. This low value was selected after various tests
n order to satisfy the assumptions of the model. Fig. 6 shows
he corresponding experimental measurements.

A genetic algorithm is by definition a nondeterministic
ethod. Thus, several identifications carried out with the same

xperimental data can not converge towards the same solution.
he method is however useful if the obtained solutions are near.

To verify this point, we systematically made a series of 100
dentifications for each sample. To exclude the cases of non
onvergences (detectable by a small adaptation value) we only
ept the 50 better solutions. In each case, we fixed pmut = 1%,
ind = 256. The algorithm is stopped after 100 generations.
Table 2 gives the mean values onto this subset of the identified

arameters, as well as the best obtained solution. First of all, it
an be noticed that the best solution is very close to mean values,
hat shows that the method converges on near solutions. The

trongest difference we can observe concerns the value of A
or the second sample (about 12%). We still have this recurring
ifficulty to identify this coefficient.

If we consider now the best solutions for both samples, we
bserve an error about 3% between both values of B. This value
eing a characteristic of the dispersed phase, this good concor-

ance is thus a proof of the capacity of the algorithm to identify
his parameter. The difference between the values identified for

can seem important but could be explained again by its weak
nfluence on the kinetics of the crystallizations and thus on the

Fig. 6. Experimental thermograms.

f
t
a

A 1.51 × 104 1.52 × 104 1.08 × 104 0.95 × 104

B 8.93 × 105 8.93 × 105 9.20 × 105 9.15 × 105

HS 4.52 × 10−2 4.42 × 10−2 5.64 × 10−2 6.44 × 10−2

hermogram. However, this difference can also be related to the
anufacturing process of the sample. Whereas the B coefficient

nly depends on the thermophysical properties of the dispersed
hase, coefficient A linearly depends on the mean volume of the
roplets. The emulsions being produced by mechanical agita-
ion, the size distribution of the droplets can slightly vary from
ne sample to another, leading to different values of A. The factor
.6 between the two values of A could thus come from a factor
1.6 ≈ 1.2 between the average diameters of the two samples,
hich is plausible.
The measured and calculated (with the best solution) ther-

ograms for the two samples are represented in Figs. 7 and 8.
ne observes a good agreement between these thermograms.
he emulsion being treated as monodisperse in the model, this
ood agreement between calculated and measured thermograms
llows to affirm that the real emulsion can be considered as
onodisperse too. The maximum shift is located at the begin-

ing of the peak, i.e. at the beginning of crystallizations. Al-
hough the cooling rate is low and the sample small, this shift
s probably related to the fact that the model does not take the
onduction within the sample into account.

In comparison, the probability of crystallization was also de-
ermined with a classic method based on the direct analysis
f the thermograms. This method, which supposes the equal-
ty between the temperature imposed by the calorimeter and
hat of the sample (isotherm), allows to determine the shape of
(T ) without supposing a particular analytical form. It gives
set of couples {T, J(T )} which are drawn on Fig. 9. These

urves show that, for a given sample, both methods give appre-
orm given by the Eq. (3), the corresponding values are, respec-
ively, A = 9.93 × 104 s−1, B = 10.28 × 105 K3 for sample #1
nd A = 6.62 × 104 s−1, B = 10.61 × 105 K3 for sample #2. It

Fig. 7. Genetic algorithm best solution for sample 1.



62 S. Gibout et al. / Thermochimic

Fig. 8. Genetic algorithm best solution for sample 2.
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Fig. 9. Comparison of results.

an be also noted that the difference of values between the two
ethods can be due to the fact that the temperature of the sample

s supposed to be equal to the temperature T∞ in the classical
ethod. However the useful information of the thermogram are

imited to the part where crystallizations take place, that means
here the error on the temperature of the sample is most im-
ortant. Finally, the differences between results for both sam-
les (mainly due to the A coefficient) are present whatever the
ethod is. This fact tends to prove that it is not an artefact but a

hysical reality.

. Conclusion

We presented a new method of determination of the crys-
allization probability from calorimetric measurement using a
enetic algorithm. The use of a simplified thermal model has al-
owed to avoid several difficulties like the thermal conductivity

easurement or the determination of the exact sample geometry.
The obtained results show the capacity of our method to esti-

ate the crystallization probability. A first appreciation criterion

s based on the identified B coefficients. Indeed, this coefficient
nly depends on the composition of the dispersed phase, and
hus its value must be identical for two different samples with
he same composition. In fact, it is what we observe, with an er-
a Acta 454 (2007) 57–63

or about 3% between both samples. The analysis of the results
bout the coefficient A is much more delicate because its value
epends on the distribution of the droplets sizes, which varies
or each sample. Moreover, the influence of A on the crystalliza-
ion kinetics being weak, its estimation is imprecise without any
egard to the method.

The second criterion concerns the comparison of the values
btained by two different methods and for the same thermogram.
e so compared the shape of the function J(T ) obtained by

ur method with the “classic” calorimetric method. Again, the
esults are relatively close, in particular for the temperatures
etween 275 and 278 K, i.e. when crystallizations occur.

Several improvements are in development. The identification
f the melting point TF would allow to correct the possible cali-
ration errors of the calorimeter. The exact influence of the shape
f the sample on the thermal behaviour is also currently studied.
f it is weak, we can try to improve the model by introducing the
onduction. This will not only allow to work with faster cool-
ng rate but also to try to estimate the thermal conductivity of
he sample. Finally, the classic mathematical expression of J(T )
sed here, will be replaced by a spline representation.

However, the introduction of all these evolutions would in-
rease the calculation time. . .
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